Popular Article

Agro-ecological Landscaping: Enhancing Forage Production through Floriculture Practices

Kedar Mahadev Gheware*¹ and Shailesh Kumar Patel²
¹Sher-e-kashmir University of Agricultural Sciences and Technology of Jammu, J&K, India
²College of Veterinary Science and Animal Husbandry, Rewa (M.P.)

*Corresponding author: Kedar Mahadev Gheware, Email: drkedar79@gmail.com

Introduction

In the face of climate change and growing demands for sustainable agricultural practices, the concept of agro-ecological landscaping has emerged as a promising approach to enhance both ecological and economic resilience (Sinclair et. al., 2019). floriculture Traditionally. and forage production have been viewed as separate enterprises one focused on beauty and aesthetic value, the other on livestock nutrition and productivity (Rabiya, 2024). However, integrating floriculture practices into forage landscapes can create multifunctional systems that not only support livestock feeding but also contribute to soil health, biodiversity, and rural livelihoods (Franzluebbers & Martin, 2022).

This article explores how ornamental plants and landscaping techniques can be harnessed to boost forage production while creating visually appealing and ecologically robust agricultural systems. By leveraging the dual role of certain flowering plants and ornamental grasses, farmers and landscapers can design systems that meet the dual goals of aesthetic enhancement and sustainable livestock nutrition.

Understanding Agro-ecological Landscaping

Agro-ecological landscaping involves designing and managing agricultural land to

mimic natural ecosystems. It combines the principles of agro-ecology such as biodiversity, nutrient cycling, and ecological balance with landscape design practices to create multifunctional agricultural spaces (Mondal & Palit, 2021).

Key principles include:

- ➤ **Diversification**: Incorporating a variety of plant species that offer different functions (aesthetic, nutritional, ecological).
- > Soil and Water Conservation: Utilizing plant roots to reduce erosion, improve soil structure, and retain moisture.
- ➤ Habitat Enhancement: Providing resources for pollinators and beneficial insects.
- Sustainable Resource Use: Minimizing chemical inputs and maximizing ecosystem services.

These principles can be applied to align floriculture and forage production in a way that benefits both livestock and the environment.

Floriculture as a Tool for Forage Enhancement

Floriculture offers a diverse palette of plant species, many of which have forage potential or support forage ecosystems.

Some ornamental plants and grasses commonly used in landscaping can double as high-quality forage for livestock (Gheware *et al.*,2025).

Examples include:

- ➤ Ornamental Grasses: Species like Pennisetum purpureum (Napier grass), Miscanthus giganteus, and Cenchrus ciliaris are visually striking and serve as excellent forage.
- **Leguminous Flowering Plants:** Clovers (Trifolium alfalfa spp.), (Medicago sativa). and lupines (Lupinus spp.) are valued landscaping for their vibrant flowers while providing high-protein forage.
- Pollinator-friendly Flowers: Plants such as sunflowers (Helianthus annuus), marigolds (Tagetes spp.), and cosmos (Cosmos bipinnatus) support pollinators, which indirectly benefit forage crops through improved pollination and soil fertility.
- > Shrubs and Hedges: Ornamental shrubs like *Leucaena leucocephala* and *Gliricidia sepium* can be shaped into attractive hedgerows while serving as valuable fodder trees.

These plants not only beautify landscapes but also improve the nutritional profile of forage resources.

Designing Landscapes for Dual Purpose

Creating an agro-ecological landscape that integrates floriculture and forage production requires careful planning:

- ➤ Plant Selection: Choose species that thrive in the local climate and offer both aesthetic and nutritional benefits.
- > Spatial Arrangement: Design plantings to create a layered, visually

- appealing layout that also facilitates livestock access to forage.
- Seasonal Rotation: Incorporate plants with staggered flowering and growth periods to ensure year-round forage availability.
- ➤ Soil Health Considerations: Use ground covers and flowering legumes to fix nitrogen, improve soil structure, and reduce weed pressure.

For example, a border of ornamental grasses can serve as a windbreak while providing forage, and flowering legumes in garden beds can enhance soil fertility for surrounding forage crops.

Environmental and Economic Benefits

Integrating floriculture and forage production offers a range of benefits:

- ➤ Soil Fertility and Structure: Deeprooted ornamental plants improve soil aeration and organic matter content.
- **Erosion Control**: Dense plantings reduce runoff and soil loss.
- ➤ **Biodiversity**: Flowers attract pollinators and beneficial insects that contribute to ecosystem health.
- ➤ Economic Diversification: Farmers can generate income from floriculture (cut flowers, ornamental plant sales) alongside livestock
- Aesthetic and Social Value:
 Landscaped areas contribute to rural
 beautification and can be used for agrotourism initiatives.

Real-World Examples

➤ In parts of East Africa, Napier grass (an ornamental-looking grass) is planted as

living fences and forage source, creating functional and attractive farm boundaries.

- ➤ European farmers incorporate flowering meadows with clovers and alfalfa to feed livestock while maintaining scenic rural landscapes.
- ➤ In India, smallholder farmers grow marigolds along field boundaries, using them for both cultural ceremonies and attracting pollinators for improved legume forage production.

These examples highlight the versatility of combining floriculture and forage to enhance productivity and environmental sustainability.

Challenges and Considerations

Despite the many benefits, integrating floriculture and forage production does present some challenges:

➤ Balancing Aesthetic and Forage Needs

Achieving a landscape that is both beautiful and productive requires careful plant selection and design.

> Pest and Disease Management

Mixed plantings can attract a wider range of pests and diseases, making integrated pest management (IPM) strategies essential.

> Adapting to Local Conditions

Selecting plant species that thrive in the local environment and meet livestock needs is crucial for success.

▶ Limited Farmer Awareness

Many farmers are unfamiliar with agroecological landscaping, requiring targeted education and extension efforts.

Addressing the Challenges

Overcoming these hurdles will involve policy support, technical guidance, and collaborative research on plant combinations and landscape designs that meet both functional and aesthetic goals.

Future Perspectives and Recommendations

To fully realize the potential of agroecological landscaping, the following strategies are key:

- ➤ Research and Innovation: Developing new varieties of ornamental-forage plants tailored to different climates and livestock needs.
- Extension Services: Training farmers and landscapers in designing multifunctional landscapes.
- ➤ **Policy Support**: Incentives for farmers who adopt these sustainable practices.
- ➤ Stakeholder Collaboration: Bringing together farmers, researchers, and landscape designers to create region-specific guidelines.

Conclusion

Agro-ecological landscaping offers an innovative pathway to bridge the gap between ornamental beauty and functional agricultural production. By leveraging floriculture practices within forage systems, farmers can create vibrant landscapes that feed livestock, support biodiversity, and generate additional income streams. As global interest in sustainable agriculture

grows, aligning floriculture and forage through agro-ecological landscaping holds promise for resilient and visually captivating farming systems.

Reference

- 1. Franzluebbers, A. J., & Martin, G. (2022). Farming with forages can reconnect crop and livestock operations to enhance circularity and foster ecosystem services. *Grass and Forage Science*, 77(4), 270-281.
- Gheware, K. M., Laishram, N., Singh, A., Kour, S., Chand, G., Singh, R., Pandey, R. K., Sharma, A., Patel, A. & Sharma, S. (2025). Fertilization and humic acid application on growth dynamics and morphological traits of dahlia (*Dahlia variabilis* L.). *Plant Archives*, 25(1), 96-99.
- 3. Mondal, S., & Palit, D. (2021). Agroecology for sustainable food system and footprint mitigation. Agroecological Footprints Management for Sustainable Food System, 69-114.
- 4. Rabiya, U. K. (2024). Modern Innovations and Sustainability in Floriculture: Trends, Technologies, and Practices. *Journal of Diversity Studies*, 3(2), 1-5.
- 5. Sinclair, F., Wezel, A., Mbow, C., Chomba, S., Robiglio, V., & Harrison, R. (2019). The contribution of agroecological approaches to realizing climate-resilient agriculture. *GCA: Rotterdam, The Netherlands*.